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Thin films of viscous fluids coating hydrophobic substrates are unstable to dewetting instabilities, and
long-time evolution leads to the formation of an array of near-equilibrium droplets connected by ultrathin fluid
layers. In the absence of gravity, previous use of lubrication theory has shown that coarsening dynamics will
ensue—the system will evolve by successively eliminating small drops to yield fewer larger drops. While
gravity has only a weak influence on the initial thin film, we show that it has a significant influence on the later
stages of the coarsening dynamics, dramatically slowing the rate of coarsening for large drops. Small drops are
relatively unaffected, but as coarsening progresses, these aggregate into larger drops whose shape and dynam-
ics are dominated by gravity. The change in the mean drop shape causes a corresponding gradual transition
from power-law coarsening to a logarithmic behavior.
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I. INTRODUCTION

Thin layers of viscous fluids on hydrophobic solid sub-
strates experience instabilities that drive flat films to “dewet”
into collections of droplets. These instabilities are tied to
intermolecular forces between the fluid and the substrate
�1,2� causing perturbations in the film to deepen �3,4� and
grow into holes. Subsequently, the fluid reassembles into lo-
calized droplets �5�. In many problems other short-range
forces produce an ultrathin film �UTF� adsorbed on the sub-
strate, and the drops sit on top of this fluid layer. These drops
are only metastable; they slowly communicate with neigh-
bors by exchanging mass through the UTF. On very large
time scales, this exchange leads to a coarsening in the num-
ber of drops, where smaller drops are drained through the
UTF into their larger neighbors.

While the early stages of dewetting and film rupture have
been extensively studied analytically �2–4,6�, and experi-
mentally �7–11�, the later stages of coarsening has recently
become the focus of extended numerical simulations and the-
oretical research. In �12,13� it was observed that the total
number of drops in an idealized one-dimensional macro-
scopic system obeys a power law,

N�t� � t−2/5, �1.1�

which has been confirmed analytically by �14� and has been
compared against results from experiments �15�. In this
model, all drops were shown to have a particular parabolic
profile that scales with their mass, but always retain the same
apparent contact angle. In the early stages of evolution, the
heights of these drops will be comparable to the initial film
height. In many applications, the influence of gravity on this
scale is negligible. For later stages of coarsening the fluid
mass becomes segregated into smaller numbers of large

drops. If the length scale of the system is large enough and
sufficient �possibly quite long� time is allowed, the resulting
coarsened drops may become considerably larger than the
original height scale. In this limiting regime, the influence of
gravity will come into effect causing the drops to deviate
from the self-similar parabolic profile and flatten into
“puddles” or “pancakes” �16–19�. Determining how this
should modify the long-time coarsening behavior predicted
by Eq. �1.1� is the theoretical motivation of this study.

We will show that incorporating the initially weak influ-
ence of gravity causes the coarsening drops to eventually to
flatten in shape. This will be shown to lead to a crossover
from power-law coarsening �1.1� to a logarithmic behavior.
To our knowledge this dynamic transition has not been pre-
viously studied in detail. While the time scales involved in
coarsening for some very thin dewetting films �7,9,20� may
prove prohibitively long for experimental studies, many re-
cent articles have considered the influence of gravity or simi-
lar forces on dewetting and thin film breakup �19,21–25� and
work on dewetting in two-layer thin films has tentatively
observed a transition in long-time coarsening dynamics �26�.

The Navier-Stokes equations of fluid motion for incom-
pressible thin films with long wavelength disturbances can
be simplified under the lubrication approximation for low
Reynolds number flows. This yields a partial differential
equation for h�x , t�, the height of the film �2�. This reduction
relies on a small aspect ratio of typical height scale to typical
length scale, and on linearizing the mean curvature of the
free surface, ���2h. Analysis �14� and computation �14,23�
for the full two-dimensional problem are very challenging
current questions; in order to make progress in the current
work, we restrict our attention to the simpler case of a one-
dimensional height profile. The leading order model is the
Reynolds lubrication equation

3��th = �x�h3�xp� , �1.2�

where � is the viscosity and the hydrodynamic pressure
p�x , t� is set by the sum of relevant forces,
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p = ��h� − ��xxh + �gh , �1.3�

where � is the fluid’s surface tension, � the density, and g is
the acceleration due to gravity. The disjoining pressure ��h�
models the intermolecular forces, and we choose to use the
form

��h� =
A

h3�1 −
hUTF

h
� , �1.4�

for the disjoining and/or conjoining intermolecular forces
�2,12,13,27–31�, where hUTF sets the approximate height of
the adsorbed ultrathin film and A is the Hamaker constant.
Coarsening experiments performed in �15� used for polysty-
rene on SiO, where hUTF�1.3 nm and A�2	10−20 J �32�.
Similar forms of ��h� have been used to represent the
Lenard-Jones 6–12 potential, and other functional forms pro-
duce similar results �22,24�. However, ��h� will have impor-
tant qualitative differences for describing other physical re-
gimes �33�.

We nondimensionalize Eq. �1.2� by introducing scales

h = Hĥ, x = Lx̂, t = Tt̂, hUTF = H
 ,

where 
 represents the height of the UTF relative to a typical
film height, 
= �hUTF /H��1. H is the thickness of the initial
unstable film layer, which can be in the range H�10
−300 nm �32�. We pick the length scale to balance the influ-
ence of surface tension and the disjoining pressure, L
=H	�, where � is the dimensionless ratio

� = �hUTF
2 /A , �1.5�

with ��10 for polystyrene on SiO. Length scale L is com-
parable to the “healing length” �34� and �18, Chap. 4�, also
called the cicatrization length �35�. It is the appropriate scale
for describing small droplets and other structures produced
by spinodal dewetting, typically L=O��m�.

There is another length scale in this problem, obtained by
balancing surface tension and gravity—this is the capillary
length, �c=	� /�g, and it is much larger, typically O�mm�. It
is too large for describing the early to moderate structures
formed in this system, but we will see that it will become the
dominant scale for the dynamics at very long times.

As usual in lubrication models, the time scale scales with
the viscosity, T=3�H�2 /��10−2 s. While the initial stages
of dewetting happen on this fast time scale, coarsening is a
quasisteady process, and as we will see, very long times will
be involved for the complete dynamics �days, months, or
longer�. Dropping the hats for convenience, we obtain the
dimensionless equation

�h

�t
=

�

�x
�h3 �

�x

 f�h� −

�2h

�x2 + h�� . �1.6�

The function f�h� is the nondimensional form of �,

f�h� =

2

h3�1 −



h
� , �1.7�

where the factor of 
2 is included so that the apparent contact
angle of the resulting partially wetting drops is fixed in the
limit 
→0 �12,36�.

The only remaining parameter in Eq. �1.6� is the ratio of
the influence of gravity compared with the disjoining pres-
sure, which can be expressed as

 =
�gH4
2

A
=

�gH2�

�
= �H/�c�2� . �1.8�

For dewetting polymer films �10−9–10−7, but given a suf-
ficiently large total fluid mass in an experimental system,
coarsening will eventually produce large drops with heights
�H for which gravity is dominant. In �22� it is remarked that
while  may be small it has an important influence on the
problem that cannot be neglected for the long-term behavior.
In other classes of dewetting problems studies have sug-
gested that the influence of gravity plays a more immediate
role and correspond to larger values of �10−3–O�1�
�23,26�.

It is convenient to combine the effects of gravitational
hydrostatic pressure, h, and intermolecular forces, f�h�, into
one generalized wetting potential U�h�,

U�h� = −

2

h2
1

2
−




3h
� +

1

2
h2, �1.9�

shown in Fig. 1 with

U��h� = f�h� + h; �1.10�

see Fig. 2. Then the final form of the dimensionless pressure
is

p = − �xxh + U��h� , �1.11�

the mass flux is

J = − h3�xp , �1.12�

and the governing partial differentail equation �PDE� can be
written as

�h

�t
= −

�

�x
�h3 �

�x

 �2h

�x2 − U��h��� . �1.13�

The wetting potential is a nonconvex, double-welled po-
tential and correspondingly U��h� is nonmonotone. Similar
potentials have been considered by others �22,24,28,29�. Al-

U∗
m

0

U∗
α

h∗
m h∗

α

U

h

slope P ∗

FIG. 1. The generalized wetting potential U�h�, incorporating
contributions for both intermolecular forces and gravitational
forces. The dashed line shows the double tangent of slope P* meet-
ing the potential at values hm

* and h
*.
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gebraic calculations show this structure for Eq. �1.9� holds as
long as �
−2. For h near 
 the potential is controlled by
the conjoining and disjoining intermolecular forces. For
larger heights, h�
, gravity is the dominant factor and the
potential would be significantly different without it �22�.
Equation �1.13� is a form of the Cahn-Hilliard equation,
modeling phase separation between two energetically favor-
able states. In connection with thin films, this phase separa-
tion is called spinodal dewetting �2,9,10�, with the preferred
states being droplets and the UTF.

We investigate the long-time dynamics of Eq. �1.13� by
adapting the approach used in �12,13� for coarsening of dew-
etting thin films. The PDE can be reduced to a low-
dimensional system for the coupled behavior of an array of
near-equilibrium drops parametrized by their positions and
pressures. Ordinary differential equations �ODEs� are ob-
tained by linearizing about a representative steady-state
droplet solution h�x−X ; P� and projecting onto the eigen-
functions of the adjoint linearized operator to yield

dPi

dt
= Cp�Pi��Ji+1,i − Ji,i−1� ,

dXi

dt
= − Cx�Pi��Ji+1,i + Ji,i−1� . �1.14�

Here, Cp is a mass-exchange coefficient controlling how fast
drops grow or shrink and Cx is a drift-coefficient controlling
how fast drops move. The fluxes Ji,i−1 between adjacent
drops are computed between drops through a quasistatic ap-
proximation. These equations are supplemented by “coarsen-
ing rules” �37� that describe how to resume the evolution of
the droplet array after any brief far-from-equilibrium dynam-
ics connected to finite-time singular behavior of Eq. �1.14�
when droplets disappear from the system. The number of
drops decreases through one of two possible mechanisms: �i�
if contact lines of drops collide, then the drops merge to-
gether �a “collision” event�, or �ii� if fluxes through the UTF
reduce a droplet’s mass below a critical level, it collapses
into the UTF mean field �a “collapse” event�. Equations
�1.14� and the coarsening rules together define a “coarsening
dynamical system” �CDS� �38� that describes the evolution
of a set of drops as more and more successively coarsen out.

After the short-time rupture and dewetting instabilities
have produced a large array of droplets, the coarsening
mechanisms force the number of drops, N�t�, to be a steadily
decreasing function of time. For very large droplet arrays,
analysis of N�t� is the simplest measure that can yield insight
on the complex dynamics of the system. We will show how
the presence of gravity influences the coarsening dynamics
of dewetting thin films by describing the differences from the
previously known coarsening rate law in absence of gravity
�1.1�. Figure 3 shows a computation for Eq. �1.13� with an
illustrative value of  and an initial array of eight drops. As
time progresses, large drops become larger and more mesa-
like, while small drops become smaller and more parabolic,
eventually melting into the UTF. We proceed as follows.
First, we map out the form of steady-state droplets of Eq.
�1.13� in Sec. II. We then generalize the CDS model to the
new structure of the family of droplets in Sec. III. We exam-
ine the results of these numerical simulations of the CDS in
Sec. IV and give a prediction for the coarsening law.

II. STEADY-STATE DROPLET SOLUTIONS

We briefly review the analysis for equilibrium partially-
wetting drop profiles in one dimension, as has been pre-
sented in �16, Sec. D2� and others �5,18,22�. Equation �1.13�
has a monotone decreasing energy functional,

E =� U�h� +
1

2
hx

2dx ,

dE

dt
= −� h3px

2dx � 0. �2.1�

Nontrivial equilibria are stationary points of the energy and
must have constant pressure, p P. Steady state solutions
are then given by the solutions of the differential equation

d2h

dx2 = U��h� − P . �2.2�

Relevant bounded-in-height solutions of this equation can
exist only for the pressures Pnode� P� Pmax. This range cor-

Pnode

Pmax

δ hpeak hnode

p
=

U
′ (
h
)

h

hm

hc

hα

FIG. 2. The derivative of the generalized wetting potential,
U��h�= f�h�+h, with h plotted on a logarithmic scale. Dotted lines
separate the three branches of fixed points �hm ,hc ,h� discussed in
Sec. II.

h

x

ln t

FIG. 3. Numerical simulation of a small array of interacting
drops in Eq. �1.13�. The array coarsens over long time scales. Small
parabolic drops generally decrease in mass until they collapse,
while larger drops become mesalike in shape.
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responds to the range of heights where a uniform film is
linearly unstable, hpeak�h�hnode, �5,22�. In this pressure
range, Eq. �2.2� has three fixed points, �hm ,hc ,h�, given by
the roots of

U��h� = P , �2.3�

see Fig. 2. For the potential �1.9� these fixed points for

→0 are approximated by

hm = 
 + 
2P + 
3�4P2 − � + O�
4� ,

hc =
1

P1/3
2/3 −
1

3

 + 
4/3
2

9
P1/3 −



3P5/3� + O�
5/3� ,

h =
P


+ O�
2� . �2.4�

hc and h depend on the pressure at leading order while the
nominal UTF thickness, hm, has a weaker dependence. In the
phase plane for Eq. �2.2� hm and h are saddle points, while
hc is a center, see Fig. 4. At Pnode and Pmax, saddle-node
bifurcations occur with the coalescence of hc and either hm or
h, respectively, as seen in Fig. 2.

Finite mass fluid droplets are given by solutions that are
homoclinic to hm. Such solutions exist for each pressure in
the range P*� P� Pmax, see Figs. 4 and 5. Here P* is a
critical value of the pressure where a saddle-saddle hetero-

clinic orbit exists between hm and h; below P* solutions
describe localized “dimple” perturbations to uniform films.
This structure for the set of equilibrium solutions was found
in �22�. This pressure is set by the slope of the double tan-
gent line to U�h�, as seen in Fig. 1, and satisfies the set of
equations

U�h
*� − U�hm

*� = �h
* − hm

*�P*,

U��hm
*� = U��h

*� = P*, �2.5�

where hm
* ,h

* are the values of hm ,h at P*. This is similar to
the double tangent construction shown in �18, Fig. 7.3�.
These quantities are approximately

P* = 	/3 + 
 + O�
2� ,

hm
* = 
 + 
2	/3 + 
34

3
 + O�
4� ,

h
* = �3�−1/2 + 
 + O�
2� . �2.6�

Equation �2.2� has a first integral giving droplet profiles
passing through hm as

dh

dx
= ± r�h� ,

r�h� = 	2�U�h� − U�hm� + P�hm − h�� . �2.7�

The maximum height of a drop, hmax, is the O�1� root of
r�hmax�=0. In the limit 
→0, we find

hmax =
P − 	P2 − /3


+


P
	P2 − /3

+ O�
2� . �2.8�

We note that the droplet maximum is always bounded from
above by h and as P→P*, hmax→h, see Fig. 6. The values
hm

* ,h
* give uniform lower and upper bounds for the heights

of all possible droplets, respectively. We will later show that
h

* corresponds to known results for heights of very large
drops �18�.

− 1√
3

0

1√
3

hm hc hmax hα

h
x

h

h(x)

FIG. 4. Phase plane for P*� P� Pmax. The inset shows the
parabolic drop profile h�x� corresponding to the homoclinic orbit.

− 1√
3

0

1√
3

hmhc hα

h
x

h

h(x)

0

hmax hα

FIG. 5. Phase plane for P� P*. Note that the homoclinic orbit
passes through hm and very near h �see top inset�. The bottom inset
shows the corresponding mesalike drop profile h�x�.

hpeak

hnode

Pnode P ∗ Pmax

h

P

hα

hc

hm

hmax

h∗
α

h∗
m

FIG. 6. The bifurcation diagram for fixed points �hm ,hc ,h� of
Eq. �2.2�, shown as solid curves. The dashed curve shows the value
of hmax. Note h is plotted on a logarithmic scale. Droplet solutions
exist for P*� P� Pmax.
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Two basic drop properties, the mass and width, may be
found by integrating in the phase plane using Eq. �2.7�. The
drop mass m, or volume, is given by

m�P� = 2�
hm

hmax h − hm

r�h;P�
dh , �2.9�

where we subtract the UTF contribution as it is adsorbed to
the substrate. To define an effective droplet width we use the
position where h=hpeak; this value corresponds to the maxi-
mum of U��h� gives an effective dividing line between the
edge of the droplet core and the outer UTF �5�, leading to the
expression for the width,

w�P� = �
hpeak

hmax 1

r�h;P�
dh . �2.10�

In general, m and w must be found numerically. For the two
special cases of large and small drops, we can additionally
describe these drop properties through asymptotic expres-
sions.

The case of small drops, given by the →0 limit, is iden-
tical to the analysis in �12,13�: �i� the lower bound on pres-
sures goes to zero, P*→0 and �ii� the upper bound on
heights diverges, h→�. In �12� it was shown that for 
=0, all drops have a parabolic profile in the their “core”
region, where h�
 and surface tension dominates intermo-
lecular forces,

h�x� �
1

2
P�w2 − x2�, �x� � w . �2.11�

Asymptotic matching of the core to the outer UTF �where
intermolecular forces dominate� through a contact line layer
determined the droplet width to be w�1 / �	3P�. The core of
those droplets can be integrated to yield the mass

m�P� = �
−w

w

h�x� − hmdx �
2	3

27P2 . �2.12�

From Eq. �2.11� the maximum height is hmax= 1
2 Pw2

�1 / �6P�. Correspondingly we note that the →0 limit of
Eq. �2.8� is also 1 / �6P�. By examining Eq. �2.8� we deduce
that the regime of small mass �i.e., large pressure� droplets in
Eq. �2.2� can be defined by the condition

P � 	 . �2.13�

As expected, gravity has a weaker influence than surface
tension and the disjoining pressure for small droplets. Hence
Eq. �2.11� remains a good description of droplets with pres-
sures in the range 	� P� Pmax, see Fig. 4.

Our focus turns to the structure of very large drops, where
gravity comes into play. Droplets of arbitrarily large masses
are possible, the definition of large vs. small masses has to be
given relative to , see Eq. �2.13�. Since their height is
strictly bounded by h

*, they take the form of wide, flat “me-
sas” or “puddles” �17–19�, see Fig. 5. In this context, we will
find it more convenient to distinguish drops as being para-
bolic or mesalike, rather than large or small. For mesalike
drops, the homoclinic orbit passes very near the h saddle

point resulting in a long region where the height is nearly
constant. Note that h�hnode, so locally, the cores of mesa
drops are in the linearly stable range of film heights.

Figure 7 shows the family of drops at a fixed value of 
with the pressure being increased over the range P*� P
� Pmax. Figure 8 shows a series of drop profiles with mass
fixed as the relative influence of gravity is increased. The
contact angle for our drops in the small mass limit is given
analytically by tan ���H /L�hx�−w��	A / �3�hUTF

2 � by a
procedure given in �12�, yielding the fixed angle

� � 1/	3� . �2.14�

This angle is independent of 
 through our scaling of Eq.
�1.7�. As can be seen from Figs. 7 and 8, the contact angle of
drops is independent of gravity and droplet size. This is as
expected since the contact angle is determined by a balance
of surface tension and the disjoining pressure at the contact
line.

The structure of large drops is most easily examined by
considering the P→P* limit. Some droplet properties can be
obtained as regular perturbation expansions,

0
h∗

m

1

h∗
α

-50 -25 0 25 50

h

x

FIG. 7. Drop profiles for =0.1 and different pressures P*

� P� Pmax. The arrows show the trend for increasing pressure.
Larger drops �P→P*� have hmax�h

* and a mesalike shape, while
smaller drops �P→Pmax� approach a more parabolic structure.

δ

1

2

-10 0 10

h

x

FIG. 8. Drop profiles for mass m=20 and 0��0.4. The drops
become shorter and wider as  increases, shown by the arrows. The
dashed profiles are the asymptotic approximations to the =0 and
the =0.4 drops from Eqs. �2.11� and �2.17�, respectively.
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hm = hm
* +

P − P*

U��hm
*�

+ O��P − P*�2� ,

h = h
* +

P − P*

U��h
*�

+ O��P − P*�2� ,

hmax = h
* − �*	P − P* + O�P − P*� , �2.15�

where

�* =	2�h
* − hm

*�
U��h

*�
� 
 4

33�1/4
.

In this limit, the height profile approaches the heteroclinic
trajectory connecting hm

* to h
*, see Fig. 5. Comparing the

eigenvalues of the two saddles, �= ±	U��h�, of Eq. �2.2�
reveals that ��m

* �1 /
�� ��
*�	�, so the form of the solu-

tions will be dominated by the behavior near h. Linearizing
�2.2� about h gives

d2h

dx2 � U��h��h − h� , �2.16�

where we assume that h−hmax is small. Solving this equa-
tion subject to h�0�=hmax and h��0�=0 gives

h � �h − �h − hmax�cosh�x	U��h���+, �2.17�

see Fig. 8. The edge of the region of support for this linear-
ized solution gives a good estimate for the width of drops,
h�w�=0,

w =
1

	U��h�
arccosh
 h

h − hmax
� , �2.18�

while the detailed structure near the contact line involves
further matched asymptotics �17�. We then approximate the
drop mass by

m = �
−w

w

h�x� − hmdx = 2
�h − hm�w

−
h − hmax

	U��h�
sinh�w	U��h��� . �2.19�

To explicitly describe the sensitive dependence of the drop
mass and width on the pressure, it is convenient to define a
new parameter, log excess pressure

Q = ln�P − P*� , �2.20�

with Q→−� corresponding to P→P*. Expanding w and m
gives

w�Q� �
1

�
* ln
2h

*

�* � −
Q

2�
* , �2.21a�

and

m�Q� � �
*�*2 ln
2h

*

�* � −
2h

*

�
* −

1

2
�

*�*2Q

�
1

	3

− Q +

1

2
ln � . �2.21b�

Figure 9 shows the numerically computed mass of drops as a
function of pressure compared against the low-mass and
high-mass limits, Eqs. �2.12� and �2.21b�, respectively.

The Q→−� limit corresponds to the heavy drops ana-
lyzed in �18, chap. 2�. We can relate h

* to the expression for
the dimensional value of the height of puddle drops with
small contact angle �,

e = 2	�/�g sin��/2� � �c� . �2.22�

Using Eq. �2.6� for h
* with Eqs. �2.14� and �1.8� yields

Hh
* �

H

	3��H/�c�2
= �c� , �2.23�

corresponding exactly with e showing that our analysis is
consistent with the previous studies of large equilibrium
drops.

Returning to our analysis, we see that by combining
�2.21b� with Eq. �2.13� a drop is well approximated by the
pancake profile �2.17� when its mesa parameter is large,

M  m � 1. �2.24�

This condition provides an effective dividing line between
parabolic and mesa drop behaviors that will be useful later.

III. QUASISTATIC MODEL FOR LONG-TIME
BEHAVIOR

Multidrop systems exist as combinations of near-
equilibrium individual droplets, each close to equilibrium lo-
cally, though the system is far from equilibrium globally.
Neighboring drops with different masses have different equi-
librium pressures and corresponding UTF heights. Though
these differences are only O�
2�, see Eq. �2.4�, the corre-
sponding differences in the pressure drives the evolution, as
equilibrium cannot occur until p has the same value every-
where. In the UTF region, the film has height O�
�, and so

0

20

40

-10 -5 0

m

Q

O(Q)

O([eQ + P ∗]−2)

FIG. 9. The m to Q relationship for =0.1. Dashed lines show
the estimates �2.21b� for large drops and Eq. �2.11� for small drops.
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the evolution occurs on long time scales that are O�1 /
3�, as
the flux scales similar to O�h3�.

The long time scale associated with the fluxes motivates a
quasistatic model for the evolution of drops. Following the
analysis of �12,13�, we reduce the PDE problem into a CDS
consisting of coupled ODEs for slow processes and rules for
isolated fast, far-from-equilibrium events occurring when the
solutions of the slow-time ODEs yields singularities. These
rules approximate the fast dynamics and return the model to
a quasistatic state. This approach locally linearizes about
each of an array of N steady-state drops parametrized by
their positions Xi and their logarithmic excess pressures Qi,
h�h�x−Xi�t� ;Qi�t�� for i=1,2 , . . . ,N. Between drops, the
pressure has a constant gradient between the flat states cor-
responding to droplet cores. Rescaling Eq. �1.13� for heights
of O�
� shows that the UTF height evolves slowly, slaved to
the behavior of the adjoining drops. The UTF serves to
couple adjacent drops by allowing a flux between them,
which is given by Eq. �1.12�. The pressure is dominated by
the intermolecular forces, so p�U��h�. This gives J=
−h3U��h��xh. It is convenient to express this as the derivative
of a chemical potential-type function, J=−�xV�h�, where

V�h� = �h

s3U��s�ds = − 3
2 ln�h� − 4
3/h + h4/4.

�3.1�

Finally, since the pressure gradient is nearly constant be-
tween drops, we approximate the derivative of V�h� with the
difference of the values of V at the edges of neighboring
drops. The flux between drop i and i+1 is then

Ji,i+1 = −
V„hm�Qi+1�… − V„hm�Qi�…

�Xi+1 − w�Qi+1�� − �Xi + w�Qi��
. �3.2�

ODEs for Xi and Qi can be found by forming the next-order
equation in the linearization and finding the eigenfunctions
of the adjoint operator. Projecting this equation onto the
eigenfunctions gives

dQi

dt
= Cq�Qi��Ji+1,i − Ji,i−1� , �3.3a�

dXi

dt
= − Cx�Qi��Ji+1,i + Ji,i−1� , �3.3b�

where Cq is the mass-exchange coefficient

Cq�Q� = 
�
−w

w

�Qh dx�−1

, �3.4�

and Cx is the drift coefficient

Cx�Q� =

�
−w

w

��h − hm�/h3�dx

2�
−w

w

��h − hm�2/h3�dx

. �3.5�

Equations �3.3a� and �3.3b� describe the slow evolution of
interacting drops. The solutions of these equations can be-

come singular in finite time when Eq. �3.2� diverges, produc-
ing coarsening events. The numerator may diverge if V di-
verges. This occurs when Qi�Qmax, where Qmax=ln�Pmax
− P*�, as the pressure has moved out of the acceptable range
for drop steady states, in an event we will call a collapse. In
fact, the evolution of such drops becomes rapid when Q
�Qfast, where Qfast is the global minimum of Cq as seen in
Fig. 10.

These small drops are no longer quasistatic, they melt
rapidly into the UTF. We delete such drops and continue with
the N−1 remaining drops. The amount of mass lost in this
deletion is negligible. A second mechanism for Eq. �3.2� to
diverge is for the denominator to go to zero, i.e., the contact
lines of the two neighboring drops collide. This event, a col-
lision, can be dealt with by a similar rule discussed in �13�.

To compute solutions, we tabulate hm and Cq for a range
of Q values. We find the minimum height by solving �2.3�
for the O�
� root. We can express Cq by combining Eq. �3.4�
with the basic statement of conservation of mass to see
Cq�Q�= �dm /dQ�−1. The drop mass and width are computed
from the integrals in the phase plane �2.9� and �2.10�. For Q
large and negative, computing the value r�h ; P� needed in
these integrals becomes problematic due to P being very
close to P*, and so tabulated quantities must be supple-
mented with the asymptotic relations for hm, m, w, and Cq.
The first three expansions appear in Sec. II, and we may use
Eq. �2.21b� for Q→−� to give

Cq�Q� � − 	3 −
1
	2

�33�1/4eQ/2. �3.6�

We will restrict attention to class of problems where the
dominant form of coarsening events are collapses. This re-
gime can be observed for small values of the reduced coars-
ening parameter �13�,

K  
 H̄



− 1� � 1, �3.7�

with H̄=M /L where M is the total mass and L the total
length of the domain. The total mass can be separated into

-3
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-1

−√
3α

0

-5 -3 -1 Qfast

C
q

Q

near-equilibrium drops

����
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����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

FIG. 10. Cq�q� for =0.1. Estimate Eq. �3.6� gives the Q→
−� limit, shown dotted. The minimum value, Qfast is the boundary
between near-equilibrium drops described by the quasistatic model
and rapidly varying drops that are deleted �the shaded area�. It is
used as the criterion in our coarsening rule for determining collapse.
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the contribution from the UTF layer and the masses of the
drop cores, M =L
+Mc+O�
2L� where Mc=�m�Qi�. Conse-
quently, K gives the ratio of average drop to UTF mass
which gives a measure of droplet density; small K describes
a dilute system. For small K with =0 in �13�, arguments
using the form of the coefficient functions in Eqs. �3.3a� and
�3.3b� showed that the positions of drops evolve slowly com-
pared to their pressures. For �0 the Cx function is quali-
tatively similar, and similar behavior is expected to hold. In
our simulations, we take K�1 /2 with equally-spaced drops
and observe no collisions. In addition, the evolution of posi-
tion is sufficiently slow so that the drift equations can be
eliminated and only pressures simulated. This assumption
will be checked in Sec. IV by computations, where we will
study Eq. �3.3a� along with the rule for collapse as a model
for droplet coarsening.

IV. COARSENING RATES

Using the CDS described above we study how the behav-
ior of N�t� is effected by  and the average mass. The num-
ber of drops is a quantity that is easy to measure experimen-
tally, and its behavior determines the scales for other
evolving properties in the system. In particular, we start with
N0 initial drops in a domain of length L with no-flux bound-
ary conditions. The total core mass Mc �and hence K� is
conserved to O�
2� throughout each simulation. Drops in the
array are chosen to be initially equally-spaced and have mass
randomly distributed about a mean,

Xi = i� and Qi = Q„N�m̄0,��;… , �4.1�

for i=1,2 ,3 , . . . ,N0 and where �=L /N0 and Q�m ;� is the
inverse function that relates mass to logarithmic excess pres-
sure found numerically from Eq. �2.9� with N�m̄ ,�� being
the normal distribution with mean m̄0=Mc /N0 and standard
deviation �. Note that the coarsening parameter can be writ-
ten as

K =
m̄0

�

.

These initial conditions give a reasonable approximation of
the drops arising from the dewetting instability acting on a
flat film. The details of the separation between drops due to
dewetting can be found elsewhere �22�.

For all computations shown here, we use an adaptive
Runge-Kutta scheme and choose parameters 
=0.1, 0�
�0.5, and K�0.5. With these parameters, the influence of
the drift equations �3.3b� are negligible. Figure 11 shows the
results of simulations with drift �dashed lines� and without
drift �solid lines�. In each run, m̄0=1, �=0.1, and K=0.25.
The =0.3 runs use 2000 initial drops so that the two cases
are graphically distinct. The onset time can be seen around
t=105 and after this self-similar coarsening behavior sets in.
For =0, the well-known power law �1.1� is observed across
six decades of time. The variation between the model with-
out drift �3.3a� and the full model �3.3� only becomes appar-
ent as the number of drops becomes small. Even here, both
curves still follow the same average trend, though with dif-

ferent variations. The =0.3 curve appears to follow the
power law for times close to onset, but longer times show the
rate slowing down. At t=1012, there are some 60 drops re-
maining for =0.3, compared to only 2 for =0.

When  is positive, non-power-law behavior is clear for
long times. The pressure dependence of the drop shape due
to the presence of gravity causes a dramatic slow down in the
coarsening rate. While the rate approaches a t−2/5 power law
when the drops are parabolic, it slows down as drops grow to
become more mesalike �see Fig. 3�. The effects of changing
 over a range of values can be seen in Fig. 12, where we
plot N�t� on a log-log scale. To properly compare initial con-
ditions, we use Eq. �4.1� in all simulations, with m̄0=2 and
K=0.5; for each  this yields a different range of Qi due to
the form of Eq. �2.21b�. The =0 curve follows power-law
equation �1.1� to the end of the coarsening regime, but all of
the N�t� curves with �0 eventually deviate from this
power-law. For the smallest value plotted, =0.02, the curve
maintains the power-law for nearly seven decades, but then
the coarsening rate eventually slows. For the largest value,
=0.5, N�t� slows from the power law almost immediately.
The coarsening is quite slow; after 1040 units of time, nearly
1300 drops remain for =0.5, while the =0 system essen-
tially reached steady-state 24 decades earlier.

In Fig. 13, several simulations with =0.1 and N0
=10 000 show different onsets of the slower coarsening be-
havior tied to different values of the droplet initial mass,
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α = 0.3

O(t−2/5)

FIG. 11. The total number of drops N versus t for the model
with drift �solid� without drift �dashed�. The differences in the
curves are more noticeable when N is small. The dotted line shows
the predicted power law for =0.
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FIG. 12. The coarsening rate as modified by  for 0��0.4.
The results for =0 follow a t−2/5 power-law behavior �dotted�,
different from the results for �0.

M. B. GRATTON AND T. P. WITELSKI PHYSICAL REVIEW E 77, 016301 �2008�

016301-8



0.5� m̄0�20. The coarsening parameter is fixed at K=1 /5
by varying � in proportion to m̄0. For m̄0=20 and m̄0=17.5,

the two largest values plotted, M̄�1 and so the droplets are
initially mesalike. The slower coarsening is in effect for
these curves almost at the onset of the coarsening itself. For
the smallest value of m̄0, drops are initially parabolic with

M̄=1 /20, and the N�t� curve can be seen following power
law �1.1� for several decades.

To study the long-time dependence of the coarsening rate
on the drop shape, we first choose an appropriate time scale.
We are interested in times when the average drop has the
mesa shape �2.17�. Examining Eq. �3.3a�, we see that the
appropriate time scale must account for values of Q, Cq, and
J in the range of mesa drops. For these drops, Eq. �2.21b�
suggests scaling Q by m̄0, Eq. �3.6� shows that Cq�Q�
scales similar to , and J scales similar to the drop separation
�. Taken together, this motivates the choice of time scale

� = t/T where T =
1

2K
. �4.2�

The limit →0 forces T→�. Hence the time scale T de-
scribes when the remaining array is dominated by mesalike
drops and slowed coarsening occurs. It may be very long if 
is small. In fact, if Mc�1 then all coarsening will follow
�1.1� leading to a single final parabolic drop. We will focus
attention on the behavior of the other case, Mc�1, for the
remainder of this section. Note that this also implies that T
alone cannot predict the onset of slow coarsening; the tran-
sition also depends on the value of Mc.

Using the new time �, our simulations show the self-
similar structure of the coarsening. From the data used for
Fig. 12, we observe that

Q̄��� � − 1.33 ln � , �4.3�

see Fig. 14, where the value 1.33 was obtained from a one-
parameter numerical fit. Using the fact that the total core
mass Mc is effectively constant, we can write

N��;� =
m̄0

m̄���
N0, �4.4�

where m̄��� is the current mean droplet mass. The dynamics
of m̄��� can then be found by using Eq. �2.21b� and replacing

Q by Q̄���. Doing this gives

m̄��� �
1

	3

1.33 ln � +

1

2
ln � . �4.5�

Using Eq. �4.4�,

N��� �
	3Mc

1.33 ln � +
1

2
ln 

, �4.6�

where the 1
2 ln  term acts to scale onset times. This moti-

vates the relationship

N��� �
m̄0

ln �
N0 for � → � , �4.7�

see Fig. 15. Instead of a power law, this is a slow inverse-
logarithmic decay of N. In terms of the mesa parameter, we

see that this is equivalent to m̄0N0 /N=M̄���, where M̄
� ln � is the mean dynamic mesa parameter. Thus increasing

either  or m̄0 increases the initial M̄, causing slower coars-
ening to begin earlier.
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FIG. 13. The coarsening rate as effected by changing m̄0, with
0.5� m̄0�20 and fixed =0.1.
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FIG. 14. The mean logarithmic excess pressure Q̄ versus � for
the simulations shown in Fig. 12. The dashed line shows the appar-
ent behavior.
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FIG. 15. The same data as in Fig. 13 plotted using Mc /N
versus �. The dotted line is the prediction �4.7� for long times. The
boxed region is shown enlarged in the inset; the horizontal dotted
line divides mesalike behavior and paraboliclike behavior, corre-

sponding to M̄ being large. Below this line, the power law for para-
bolic drops can be seen.
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Replotting the data in Fig. 13 with Mc /N versus � �Fig.
15� shows that all of the curves collapse onto a single line as
described by Eq. �4.6�. The inset shows an enlargement of
the boxed early-time portion. The transition from the power
law to the logarithmic law occurs on either side of the dotted

horizontal line representing M̄ being large.
It is also illustrative to plot N / �Mc� against 	� on a

log-log plot, as in Fig. 16 where all of the data in Fig. 12 and
Fig. 13 are replotted. This shows the relationship �4.7� col-
lapses all curves into a single trend. Short times experience
the parabolic drop related power law, while long times dis-
play the mesa drop related logarithmic law.

V. SUMMARY AND CONCLUSIONS

We have described the coarsening dynamics of an ideal-
ized one-dimensional thin film with the wetting potential
modified by the inclusion of gravity. While the influence of
gravity is negligible in the early stages of evolution, coars-
ening dynamics leads to the formation of drops with much

larger height scales. Hence gravity will eventually come into
play with the crossover described in terms of the mesa pa-
rameter M. Large drops with M�1 are “mesalike” being
much wider and flatter than smaller parabolic drops with M
�1.

The presence of gravity has been to shown to dramatically
slow the rate of coarsening from the N�t�� t−2/5 power law
for parabolic drops. As coarsening proceeds, the average
drop mass grows, and provided there is sufficient total mass
in the system, eventually makes the mean dynamic parameter

value large, M̄�t��1. In this long-time regime, the system is
dominated by a large population of mesa drops which
coarsen according to the slower logarithmic law �4.7� coars-
ening rate. Some studies comment on the transition to this
behavior �26�, but due to the time scales involved it is diffi-
cult to reach in experiments and due to limitations in com-
putational power, direct simulations of Eq. �1.13� in one and
two dimensions have been limited to systems of tens or hun-
dreds of drops �23,24,26�. Our reduction of the PDE to a
coarsening system �3.3� has allowed us to obtain much
clearer statistical trends based on much larger systems.

Many new questions have been opened up and much fur-
ther work is needed on coarsening in thin films. In order to
connect to real experimental systems, extensions of the
analysis and simulations to two dimensions are needed.
Some primarily theoretical results suggest that qualitatively
similar behavior should hold �14�. Other limits including that
of “dense” droplet arrays and cases where collisions domi-
nate the coarsening process are also likely to have interesting
interactions with the influence of gravity. Analyses for ex-
periments with timescales that might allow for these coars-
ening regimes to be observed �with destabilizing gravita-
tional influences �39–41� or coarsening with condensation
�27,42�� are also very important future directions.
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